Commercial Water Heating Residential Combo Systems with Gas Absorption Heat Pumps

Stone Mountain Technologies, Inc.

Johnson City, TN www.stonemountaintechnologies.com

Michael Garrabrant, President

ACEEE Hot Water Forum
Nashville, TN
February, 2015

Topics of Discussion

- Technology Background and Status
- Commercial Water Heating Application
- Residential Combo System Application

GHP vs. GAHP

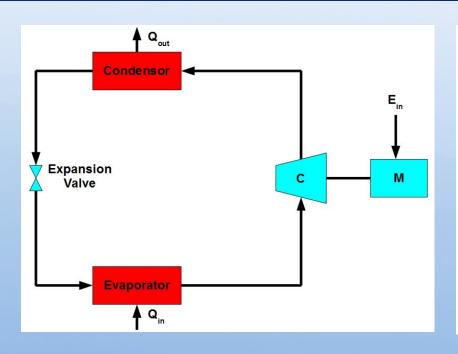
❖ Gas Heat Pump (GHP) = Gas Engine Driven Vapor Compression Cycle

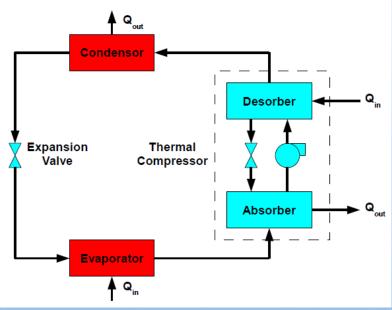
✓ Gas Absorption Heat Pump (GAHP) = Gas Absorption Heat Pump

Stone Mountain Technologies, Inc. Thermal Compressors for Sorption Heat Pumps

- Space Heating
- Water Heating
- Combo Systems
- Pool Heating
- Residential
- Commercial

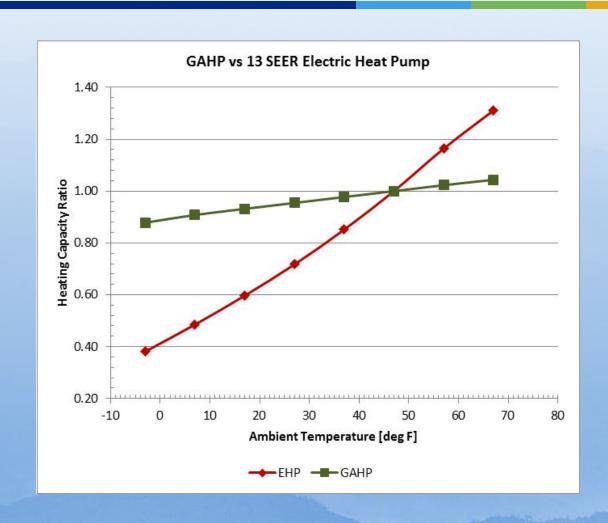
Development Status


- * Residential Water Heater 6 Field Test Units Installed
- * 80,000 Btu/hr GAHP Alpha Prototype Under Test
- * 140,000 Btu/hr GAHP Lab Testing



How Does It Work?

 $COP_h = Qcond/E_{in} = 3.0-4.0$


Qheating = 1.0-1.3 x Q_evap

 $COP_h = (Qcond + Qabs)/Q_{in} = 1.5-2.0$

Qheating = (Qcond + Qabs) ~ 2.5 times Qevap

GAHP vs EHP Performance

From A Marketing Perspective....

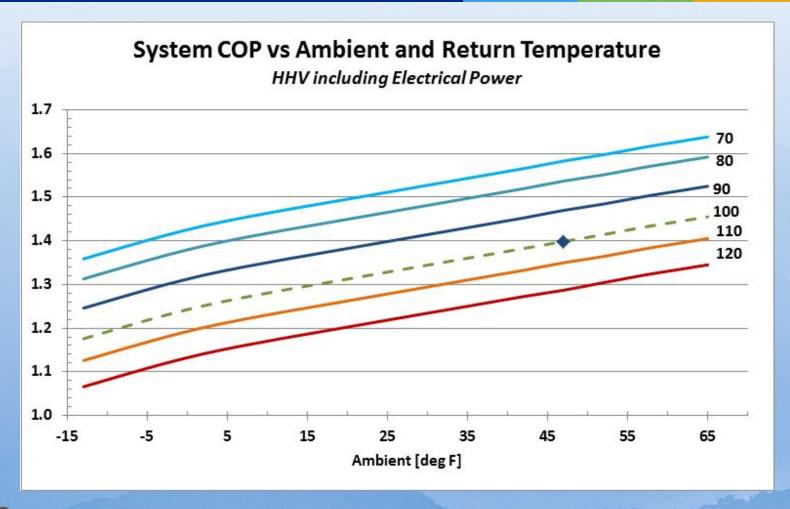
Gas Absorption Heat Pumps:

Are NOT "Heat Pumps"

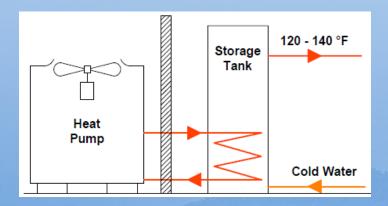
Are Very High Efficiency Furnaces or Boilers

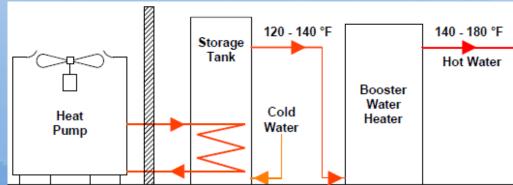
SMTI Gas Absorption Heat Pump

COP_{HHV} = 1.4 at 47/100°F (including parasitics)

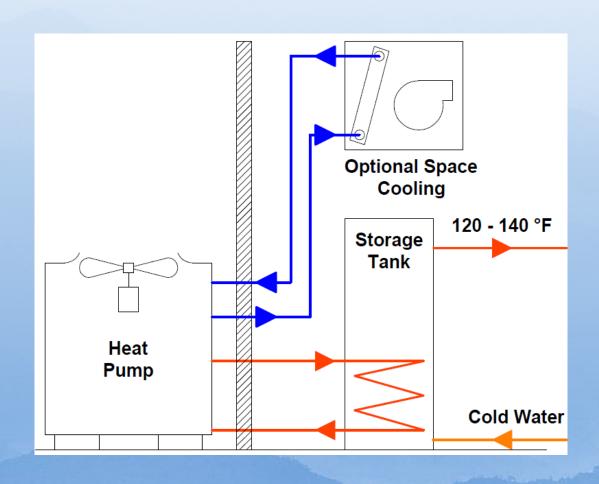

- Gas-Fired, Air to Water Heat Pump
- Condensing
- ❖ 3:1 Modulation
- * 80,000 / 140,000 Bth Heating Output
- 47 F Ambient
- * 100 F Return
- ❖ 20 F Delta
- Outdoor Installation

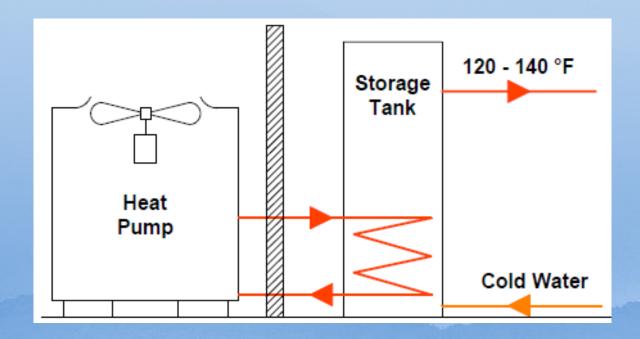
SMTI GAHP Target Performance


Nominal 20F Rise



"Planting Seeds from 5000 ft"


- System Configuration
 - Stand-Alone, Pre-Heat, Parallel
 - Impact of Return Water Temperature: Heat Pump & Conventional
 - Paired with Non-Condensing or Condensing
- Utility Cost Savings Estimate
- Simple Payback Analysis


Optional Simultaneous Space Cooling

Stand-Alone Installation

- **❖ Existing Installation 140,000 Bth or Less Input**
- **❖ 140°F or Less Water Temperature Requirement**
- ❖ 210 gph or Less @ 80°F Rise

Stand-Alone Installation vs. Non-Condensing Storage

gpd	500	1000	1500	500	1000	1500	500
gph, avg	31	63	94	31	63	94	31
Baseline	NCS						
Baseline COP	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Climate	Warm	Warm	Warm	Mid	Mid	Mid	Cool
Avg Ambient [F]	60	60	60	50	50	50	40
Baseline Input [Bth]	75,000	100,000	199,000	75,000	100,000	199,000	75,000
GAHP Capacity [Bth]	80,000	80,000	140,000	80,000	80,000	140,000	80,000
							7 (2)
Water Temp Rise [F]	80	80	80	80	80	80	80
Avg HP COP_g	1.55	1.55	1.55	1.47	1.47	1.47	1.4
Therms Saved/Yr	726	1451	2177	683	1367	2050	643
Baseline Utility, \$/yr	\$1,799	\$3,599	\$5,398	\$1,799	\$3,599	\$5,398	\$1,799
GAHP Utility, \$/yr	\$1,037	\$2,073	\$3,094	\$1,087	\$2,174	\$3,246	\$1,136
Utility Savings \$/yr	\$763	\$1,525	\$2,303	\$712	\$1,424	\$2,152	\$663
3-Yr Savings	\$2,288	\$4,576	\$6,910	\$2,136	\$4,273	\$6,455	\$1,989

1000

63

NCS

8.0

Cool

40

100,000

80,000

80

1.4

1285

\$3,599

\$2,272

\$1,326

\$3,979

1500

94

NCS

0.8

Cool

40

199,000

140,000

80

1.4

1928

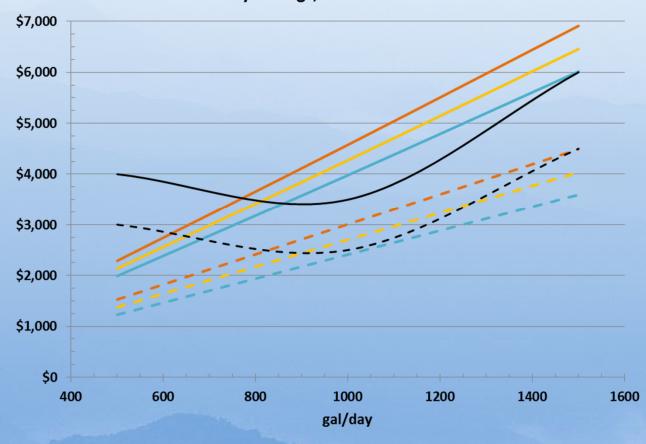
\$5,398

\$3,393

\$2,005

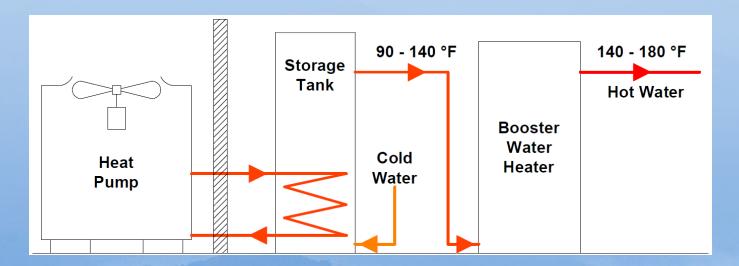
\$6,015

Stand-Alone Installation vs. Condensing Storage


gpd
gph, avg
Baseline
Baseline COP
Climate
Avg Ambient [F]
Baseline Input [Bth]
GAHP Capacity [Bth]
Water Temp Rise [F]
Avg HP COP_g
Therms Saved/Yr
Baseline Utility, \$/yr
GAHP Utility, \$/yr
Utility Savings \$/yr
3-Yr Savings

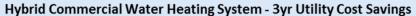
500	1000	1500	500	1000	1500	500	1000	1500
31	63	94	31	63	94	31	63	94
CS								
0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Warm	Warm	Warm	Mid	Mid	Mid	Cool	Cool	Cool
60	60	60	50	50	50	40	40	40
75,000	100,000	199,000	75,000	100,000	199,000	75,000	100,000	199,000
80,000	80,000	140,000	80,000	80,000	140,000	80,000	80,000	140,000
		ш,						
80	80	80	80	80	80	80	80	80
1.55	1.55	1.55	1.47	1.47	1.47	1.4	1.4	1.4
489	978	1466	447	893	1340	406	812	1218
\$1,545	\$3,076	\$4,591	\$1,546	\$3,076	\$4,591	\$1,546	\$3,076	\$4,591
\$1,037	\$2,073	\$3,094	\$1,087	\$2,174	\$3,246	\$1,136	\$2,272	\$3,393
\$509	\$1,003	\$1,497	\$459	\$902	\$1,345	\$410	\$804	\$1,198
\$1,527	\$3,008	\$4,490	\$1,376	\$2,705	\$4,036	\$1,229	\$2,411	\$3,595

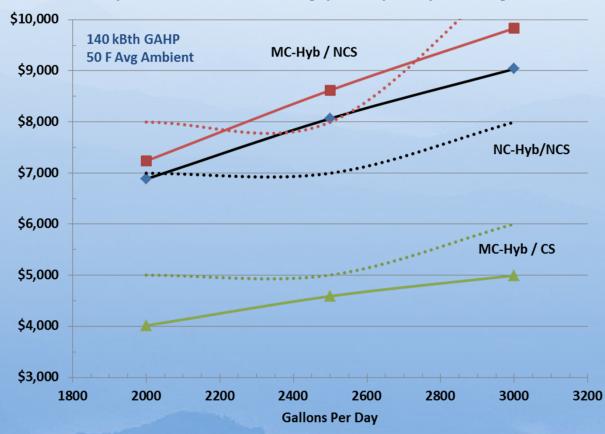
Stand-Alone Installation Simple 3yr Payback Level


3 Year Utility Savings, Stand-Alone Installation

Pre-Heater Installation

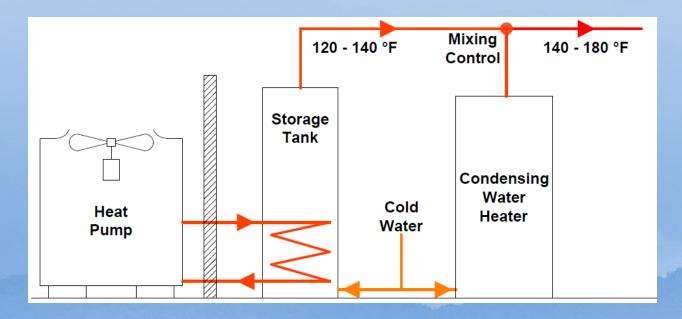
- ❖ Full Service Restaurant: 2000 3000 gpd
- Heat Pump Used As Pre-Heater (140,000 Btu/hr)
- Condensing or Non-Condensing Booster

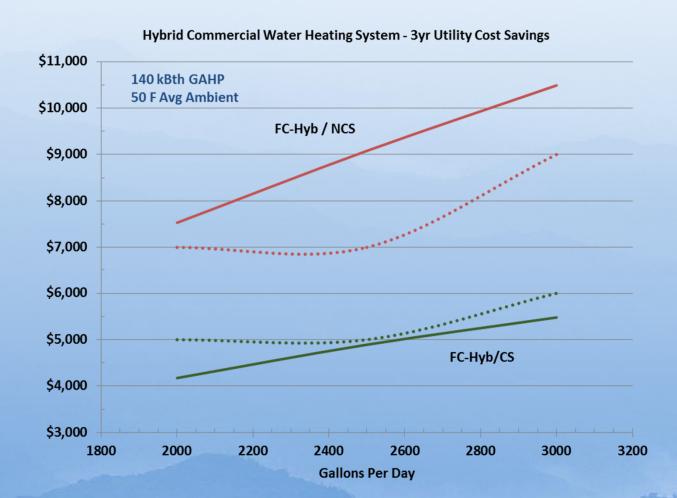



Pre-Heater Installation

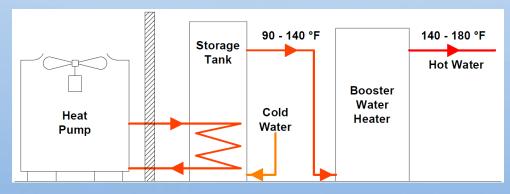
gpd	2000	2500	3000	2000	2500	3000	2000	2500	3000
gph, avg	125	156	188	125	156	188	125	156	188
Baseline	NCS	NCS	NCS	NCS	NCS	NCS	CS	CS	cs
Direct Fired COP	80%	80%	80%	88%	88%	88%	88%	88%	88%
Climate	Mid	Mid	Mid	Mid	Mid	Mid	Mid	Mid	Mid
Avg Ambient [F]	50	50	50	50	50	50	50	50	50
Direct Fired Input [Bth]	200,000	200,000	400,000	200,000	200,000	400,000	200,000	200,000	400,000
GAHP Capacity [Bth]	140,000	140,000	140,000	140,000	140,000	140,000	140,000	140,000	140,000
Water Temp Rise [F]	80	80	80	80	80	80	80	80	80
Avg HP COP	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47
% GAHP	80%	7 5%	70%	80%	75%	70%	80%	75%	70%
Therms Saved/Yr	2187	2563	2870	2296	2733	3116	1349	1549	1695
Hybrid System, \$/yr	\$4,902	\$6,307	\$7,783	\$4,784	\$6,123	\$7,518	\$4,784	\$6,123	\$7,518
Savings, \$/yr	\$2,295	\$2,690	\$3,013	\$2,413	\$2,874	\$3,277	\$1,337	\$1,529	\$1,664
3-Yr Savings	\$6,886	\$8,069	\$9,038	\$7,239	\$8,621	\$9,832	\$4,012	\$4,587	\$4,991

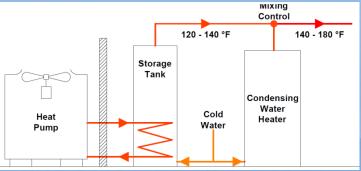
Pre-Heater Installation



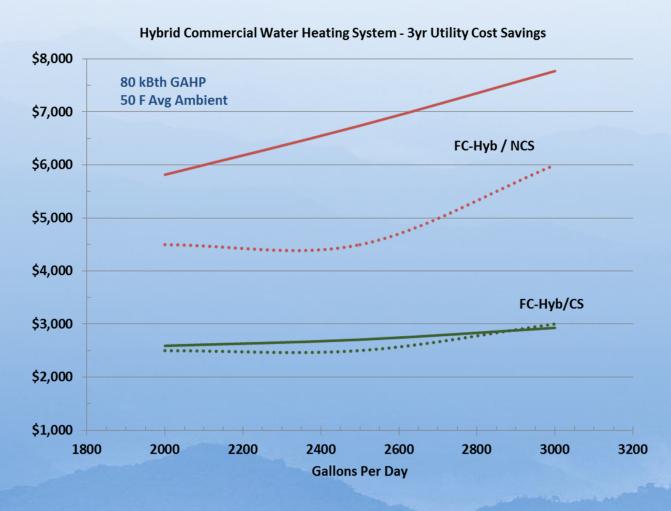

Parallel Installation

- ❖ Full Service Restaurant: 2000 3000 gpd
- * 140,000 Btu/hr Heat Pump
- Condensing Peaking Water Heater

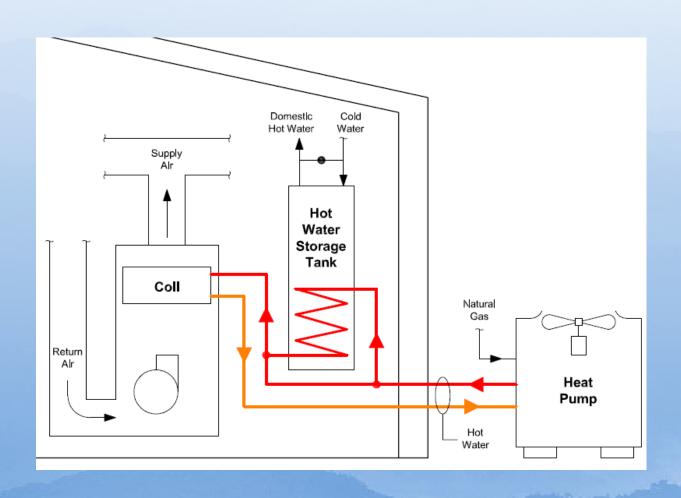

Parallel Installation



Pre-Heat / Parallel Installation


- ❖ Full Service Restaurant: 2000 3000 gpd
- * 80,000 Btu/hr Heat Pump
- Condensing Peaking/Booster Water Heater

Pre-Heat / Parallel Installation, 80,000 Btu/hr GAHP


Gas = \$1.20/therm Electric = \$0.12 kWhr

Conclusions & Thoughts

- Potential 2-3 yr Simple Payback for many applications
- 3-4 yr Simple Payback for most others
- GAHP / Storage Tank sizing important
- Method of Interface with Direct-Fired equipment critical
- Climate Zone Dependency Complex (ambient/water temperature)
- Application Modeling w/representative draw patterns to develop optimum system hardware by application.
- Capital Utilization System Design

Residential GAHP Combo Systems

GAHP Residential Combo System Analysis

Assumptions

- * Region IV & V BIN: Heating Load/Ambient/GAHP COP
- 64 gpd, 55 / 50 F CWT (Region IV / V)
- Summer COP_gas 1.6 / 1.5 for Region IV/V
 - * 3,000 Btu per day standby loss
- Low & High Efficiency Baseline
 - * 80% Gas Furnace / 0.60 EF Gas Storage Water Heater
 - ❖ 95% Gas Furnace / 0.63 EF Gas Storage Water Heater

GAHP Residential Combo System Analysis

High Level Results

Space Heating
Baseline COP
Therms Saved/yr
Utility Savings, \$/yr
Water Heating
Baseline EF
Therms Saved/yr
Utility Savings, \$/yr
Total
Therms Saved/yr
Utility Savings, \$/yr
Installed Cost Premium
Simple Payback, Yrs

	Regi	on 4	Region 5				
	0.8	0.95	0.8	0.95			
	743	469	829	547			
	\$758	\$430	\$832	\$493			
	0.60	0.63	0.60	0.63			
	135	124	139	127			
	\$149	\$136	\$152	\$138			
	878	593	968	674			
	\$907	\$566	\$984	\$631			
	\$3,300	\$2,350	\$3,300	\$2,350			
4	3.6	4.2	3.4	3.7			

Acknowledgements

- U.S. Department of Energy
- Gas Technology Institute
- Oak Ridge National Laboratory

Thank You!

Michael Garrabrant (423) 735-7400

mgarrabrant@stonemtntechnologies.com

